
A NEW METHOD OF SOLVING THE INTEGRAL EQUATIONS 

OF RADIATION HEAT TRANSFER 

S. M. Bednov UDC 536.3 

We present a method for calculating the radiation heat transfer between bodies 
and a new approach to the solution of the corresponding integral equations. 
We show, in fact, that the first approximation describes the solution of these 
equations with sufficiently high accuracy and is, in some cases, exact. 

For simplicity we consider the problem of calculating the radiation heat transfer between 
infinite parallel isothermal strips with identical radiation characteristics in the very same 
situation as in [i] (see Fig. i). The calculation reduces to the determination of the ef- 
fective radiation thermal flow profiles over the surfaces of the strips from the following 
system of integral equations: 

I 
Eeff, = 8oT~ + (I - -  s) .[ Ee~ (g)K(x,  g, y) d v, 

0 

1 
~ff2---- 8~ + (1 - - 8 )  .f Eeff~x) K (x' "~' '~) dX, 

0 

(1) 

where 

K (x, V, ~) = ~'~ 
2 [(x  - -  V)~ + ~ ] a / 2  " 

It was shown in [1-3] that following appropriate transformations the solution can be 
found in a generalized form depending on dimensionless parameters of the given problem. When 
T: # Tu the solution is obtained as the sum of two solutions: i) for equal temperatures of 
the strips, and 2) when one strip has zero temperature and the other has the temperature T* = 
(Ta ~ -- TI")*/"(T= > T~). For the first case we solve the equation 

I 
~aCx) = 1 - -  (1 - - e )  .[ ~a(V) K(x, V, v) dv, (2) 

o 
for the second case we solve the system of integral equations: 

! 
~ ,  (x) = (1 - -  ~) ~ ~ ,  (v) K (x, v, ~) dr, 

0 
1 

~B,(y) = 1 + ( 1 - - 8 )  [~B,(x) K(x, y, y) dx, (3) 

where 

E~" ffa (x) ~eff l(x) ~B+- J~eff 2(x) 
[Sa eoT~ ; ~ s ~ T  *~ ; e ~T  *~ 

Knowing the solutions of Eq. (2) 
thermal flows over the strips from the relations 

qi (x) = soT 4 1 - -  ~ (x) ' s~T*~i  (x), 
1 - - e  

T r a n s l a t e d  f r o m  I n z h e n e r n o - F i z i c h e s k i i  Z h u r n a l ,  Vo l .  
1986 .  O r i g i n a l  a r t i c l e  s u b m i t t e d  S e p t e m b e r  26,  1985 .  

and system (3), we obtain the profiles of the output 

i=l. 2, (4) 
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Fig. i. Thermal flow profiles for parallel strips 
(e, = e= = ~, T, = T= = T): a) by formula (27); b) 
numerical solution [i]; curves labeled I, 2, 3 are 
for e values 0.i, 0.5, 0.9. 

where 

~(x) ~ ~., (x); ~ (x) 1 -- @.~ (x) 
1 --8 1 - - e  

This method, however, can be s i m p l i f i e d  somewhat. The i n i t i a l  equa t i ons  are  l i n e a r  in  T~; 
t h e r e f o r e  we seek a s o l u t i o n  of  system (1) in  the  form 

4 E e f f i  (x) == e~T4/2i_I (x) "+" 8ciT2f2i (X), i - 1, 2. 

I t  f o l l ows  from Eqs. (1) t h a t  fx(x)  ~ f 4 ( x ) ;  f2(x)  = f , ( x ) .  Func t ions  fx(x)  and fu(x)  
may be obtained from a system analogous to system (3): 

l 

[1 (X) = ] ~- (1 -- 8) t' [2 (Y) K (X, y, V) dy,  

I 

f ,  (y) = (I - -  ~) .! fl (x) K (x, y, v) ax. 
0 

(5) 

(6) 

The thermal flow profiles are then 

q~(x) = 1--sfl(x) 8gT~ eft(x) ~T~_~, i =  1, 2. (7) 
1- -~  - 1 - - e  

It follows from this that the solution of the general problem for T, # T~ can only be found 
from the system (3). When T, = T= the thermal flow distribution function is 8a(X) = f~(x) + 
f2(x). This simplifies the solution of the initial problem since there is no need to solve 
the integral Eq. (2). 

In [1-3] systems of two bodies were considered with identical radiation properties. How- 
ever, a solution can be found even for e, # e2. We seek such a solution in the form 

i V / 1--8~ ~i+l(x), i = 1 ,  2. (8) % f f i  (X = %~T~ ~i, (x) + e3-~ oT~-i 1 -- e3-i 

I t  i s  easy to  show t h a t  ~ ( x )  ~ ~ . ( x )  a n d ~ a ( x )  ~ ~ 3 ( x ) ,  whi le  the  f u n c t i o n s  ~ , ( x )  and 
~2(x) a re  de termined from the  f o l l o w i n g  system of  i n t e g r a l  e q u a t i o n s :  

I 

0 
(9) 
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1 

~ (V) : 1 / (1  - -  el) (1 - -  ~2) [ ~1 (x)/( (x, V, Y) dx. 
6 

The thermal flows are calculated from the relations 

~3-~ ~2 (x) , i =  1, 2 (i0) qi(x) = 8~(IT~ 1 --eiWl(X)l - -  ~ ~3-i ~T~_i 1//(1 ~ 1 ) ( 1  - - e i )  

Thus, we see that the solution (6) for ~t = ~2 contains as a special case the solutions 
of the more general problem for e, # ei. Actually, the coefficients of the integral terms in 
systems (6) and (9) vary from 0 to I and solutions with identical coefficients coincide. For 

example, for el = 0.i and e= = 0.9 the quantity /(i--~I)(i- c2) = 0.3 and the functions 
~,(x) and ~:2(x) from system (9) are identically equal, respectively, to functions ft(x) and 

fi(x) from system (6) for e = 0.7. 

For completeness we consider the case in which one or both of the strips is black. Here 
the effective flow profiles are constant over the surface of the plates; however, the profiles 
of the exiting thermal flows vary since each point on the surface of a strip "sees" the sur- 
rounding "cold" "black" space at its own solid angle, and the given problem is solved in terms 
of the incident flows. For definiteness, let el = I; then the initial system of equations be- 
comes 

1 

Eim (x) = .f Eeff~ (y) K (x, y, y) dy, Eeff2 (y) = eioT~ + (1 - -  e2) (IT~z (y), (11)  
0 

where 

1 

z (v) = j K  (x, v, v) dx. 
0 

The thermal flow profiles are then, respectively, 

4 ql (x) = oT~ [1 + (1 - -  e~) ~ (x)] - -  ~2oTiz (x), q2 (x) = eloT~ - -  s2~T~z (x), (12)  

where 
1 

(x) = ,i" z (y) K (x, y, y) dg, 
o 

i n  w h i c h  c a s e  t h e  s o l u t i o n  may be  o b t a i n e d  i n  q u a d r a t u r e s .  T h e s e  same  r e l a t i o n s  a p p l y  e v e n  
when  b o t h  o f  t h e  s t r i p s  a r e  b l a c k .  

N e x t ,  we c o n s i d e r  t h e  v e r y  same p r o b l e m  b u t  i n  a s o m e w h a t  m o d i f i e d  s e t t i n g .  Assume now 
t h a t  t h e  s t r i p s  Ex = ~2 = ~ h a v e  c o n s t a n t  t h e r m a l  e m i s s i o n  and a r e  n o t  m a i n t a i n e d  a t  c o n s t a n t  
t e m p e r a t u r e s .  S i n c e  t h i s  p r o b l e m  was  n o t  c o n s i d e r e d  e a r l i e r  i n  t h e  l i t e r a t u r e ,  we i n v e s t i g a t e  
i t s  s o l u t i o n  i n  some d e t a i l .  I n  t h i s  c a s e  t h e  i n i t i a l  s y s t e m  o f  e q u a t i o n s  i s  a n a l o g o u s  t o  t h e  
s y s t e m  ( 1 ) ,  e x c e p t  t h a t  T i s  a f u n c t i o n  o f  t h e  c o o r d i n a t e s .  The h e a t  b a l a n c e  a t  e a c h  p o i n t  
of the strips can be written as follows: 

qi=e~T~(x)--gEini(X), i :  1, 2. 

Let e # i; writing Ein in terms of Eeff, from system (i) we obtain 

I 

F-ef~(x) = q i +  j" ~ f f 3 - i  (v )K(x ,  V, Y) dv, g =  1, 2. 
0 

Using the principle of superposition, we seek a solution in the form 

(13) 

(14) 

E e f f i  ~ )  : ql02i-1 (x) + qi02i (x), i = 1, 2. 

S i m i l a r  t o  w h a t  was  d o n e  b e f o r e ,  we c a n  show t h a t  0 1 ( x )  s 0 , ( x ) ,  8 2 ( x )  s 0 3 ( x ) .  
0 1 ( x ) ,  0 2 ( x )  a r e  o b t a i n e d  f r o m  t h e  f o l l o w i n g  s y s t e m  o f  i n t e g r a l  e q u a t i o n s :  

(15) 

The functions 

! 

01 (x) = l + ~ 03 (y) K (x, v, ~) @, 
0 

I 

02 (y) = ~ 0i (x) K (x, y, ~) ax. 
0 

(16) 
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Fig. 2. Dependence of K(x, y, y) on x-y for various values of the para- 
meter y: curves labeled i, 2, and 3 are for y values of 0.i, 0.5, and 
i, respectively. 

Fig. 3. Distribution of thermal flows in a boundary zone for a set of 
two plates: curves labeled I, 2, 3, and 4 are for E values of 0.01, 0.i, 
0.5 and I, respectively. 

Thus we see that the solution in this case is described by an analogous system, just as 
in the case of constant temperatures of the strips [system (6)], except that here the coef- 
ficient of the integral terms is equal to i; therefore, the functions 8,(x) and 0a(x) depend 
on a single parameter y. The temperatures are calculated from the relations 

Ti(x ) [q~l--8(1--Ol(X)) + q3_iO~(x)]1/4 = , i = l ,  2 .  ( 1 7 )  
8 ~  E~ 

I f  t h e r e  i s  e q u a l  t h e r m a l  e m i s s i o n  on t he  p l a t e s ,  t h e n  

Tl (x) -= V= (x) ~-- V (x), 

T(x) = [q l--~4-~(O~(x) § O~(x)) ] (18) 

It is easy to show that when e, # e2 we arrive at the very same relationships, except that in 
the terms in Eq. (17) containing q, we replace e by e, and in the terms containing qa we re- 
place e by e2. Introducing the equilibrium state temperature Tp~ = (q,/~),/4, we see that the 
physical meaning of the functions 8,(x) and 82(x) is that they represent a dimensionless tem- 
perature to the fourth degree for the first and for the second strip when there is no heat 
emission from the second of the black strips: 

0x = , % ( x ) =  , 
Tpl J~=1 Tp, J~=1 

w h i l e  t h e  sum 0 , ( x )  + 0 a ( x )  o f  t h e  f u n c t i o n s ,  a s  c a n  be  s e e n  f r o m  t h e  r e l a t i o n s  ( 1 8 ) ,  i s  t h e  
dimensionless profile of the temperature to the fourth degree for black strips with identical 
heat emission. 

Functions 0,(x) and 82(x) can also be given a somewhat different interpretation. They 
represent dimensionless temperature profiles over the strips not only in the case e, = e2 = i 
and q2 = O, but also when e, = i, e2 # I, q2 = O. This is, of course, a consequence of the 
fact that the temperature profiles are determined by the internal heat emission of the "black" 
first strip. The "cold" strip (q2 = O) under stationary conditions radiates all that it ab- 
sorbs. However, since the energies being radiated and absorbed are proportional to the degree 
of blackness of this strip, it is then obvious that the temperature profile on the strip is 
independent of its radiation properties. Moreover, the situation here in the heat transfer 
process is that the magnitude of the flow incident on the "hot" strip is identical in this and 
in the other case. In the first case the flow coming from the first strip is absorbed by the 
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TABLE i. Values of the Total Thermal Flows in a System of 
Parallel Strips Q/eoT4L 

1 
0,5 
0,1 
0,05 

s=O, I 

A ] i S  

0,9340 0,9338 
0,8607 0,8576 
o,5122 
O, 3388 

0,9338 
0,8575 
0,365 
0,205 

~= O, 5 

A I 1c 

0,7388 '0,7384 0,7384 
0,5538 0,5494 0,5490 

0,1593 0,!49 0,17354 0,0826 0,09298 0,082 

~=0,9 

A ] B 

0,6010 ]0,6010 
0,4071 0,4064 
0,1045 0,t029 
0,05387 0,05278 

0,6010 
0,4064 
0,1029 
0,0528 

Comment: The data of column A were obtained using the 
"balance" method assuming constancy of the effective radi- 
ant fluxes over the whole surface of the strips [i]; column 
B data are from the numerical solution [i]; column C data 
reflect use of the proposed solution (27). 

second and is radiated back onto the "hot" strip; in the second case, this flow incident on 
the first strip is composed of reradiated and rereflected flows, and it follows directly from 
the assumptions made that, both in magnitude as well as in their distribution in space, these 
flows incident on the first "hot" strip, both in the first as well as in the second case, are 
identical; therefore, the temperatures are also. 

Thus, we have shown that the methodological solution of the problem of calculating the 
radiation heat transfer in a set of bodies under these circumstances can be reduced to solving 
a system of integral equations of the first kind of the type (6). 

Usually (see [1-3]) these systems of equations are solved numerically or by the method of 
successive approximations [1-4] or by the method of "balance" [5]. However, a more detailed 
consideration of the kernel of the integral equations makes it possible to improve somewhat 
the convergence of the successive approximations and to propose an approximate solution of 
these equations in quadratures which, in many cases, may be represented in the form of analytic 
expressions. 

Thus, for example, for the system of strips the kernel may be described by the function 

y2 I 
K(x, y, ~)=- (19) 

2 [(x--  V)2 + %r 

This function possesses a singularity: 

?~ 1 ~ O, x =/= y, 
limK(x, y, ? ) =  lim ~ = ~ (20) 
wo ~ o  2 [(x--y)~ + y~] a/2 oo, x =  y. 

For clarity we exhibit the nature of the behavior of the function K(x, y, y) in its de- 
pendence on x--y in Fig. 2 for various values of y. The limit of the integral of this function 
along the coordinate axis as y + 0, excluding the boundary points, is equal to i. At the 
boundary points its value is equal to 0.5. This is easy to verify by a direct integration or 
to determine by starting from physical considerations, since this integral is the total (dimen- 
sionless) thermal flow being radiated by elements on the strip into a halfspace (in this case 
onto the second strip since these strips are infinitely close together). It is possible to 
determine the magnitude of the flow at the boundary points from the following considerations. 
If we take two identical systems of two half planes, join them and form a system of two planes, 
then a boundary point, for definiteness on some lower half plane, turns out to be inside the 
system and the total thermal flow being radiated by it falls onto the upper plane. Since the 
upper half planes are identically situated relative to it, then, in like manner, the thermal 
flow radiated by this point of the lower half plane onto the upper half planes also contributes 
to each half plane exactly half of the total flow. Thus in the limit the function K(x, y, y) 
goes over into a 6-function [6]. Similar conclusions can also be made for a system of disks, 
planes, and, apparently, other systems. For clarity and simplification of our calculations 
we show how this can be used in solving, for example, the integral equation 

1 

p(x) = 1 + O  ~ p(y )K(x ,  y, y)dy. (21) 
0 

There is no loss of generality in applying the method to the solution of Eq. (21), which de- 
scribes the problems we have considered when e~ = E2 = E and T~ = T2 = T or ql = q2 = q. We 
rewrite this equation in the following equivalent form: 
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1 1 

p (x) = ' L[I + v .i [P (v) - p (x)] K (x, v, v) ay]. j  
1- -9  .1" K(x, y, y)dy o (22) 

0 

We c o n s i d e r  t h i s  e q u a t i o n  i n  more  d e t a i l .  The s e c o n d  t e r m  i n  t h e  b r a c k e t s  i s  s m a l l  f o r  
Xarge  and s m a l l  v a l u e s  o f  t h e  p a r a m e t e r  y .  A c t u a l l y ,  f o r  l a r g e  y t he  f u n c t i o n s  p ( x )  and p ( y ) ,  
wh ich  r e p r e s e n t  d i m e n s i o n l e s s  e f f e c t i v e  r a d i a t i o n  f l o w s ,  a r e  c l o s e  to  one a n o t h e r  and v a r y  
w e a k l y ,  t h e  r o l e  o f  m u l t i p l e  r e f l e c t i o n s  i s  s m a l l  ( t h e  s t r i p s  a r e  l o c a t e d  f a r  f rom one a n o t h e r ) ,  
and t h e  d i f f e r e n c e  p ( y )  -- p ( x )  i s  s m a l l .  For  s m a l l  y t h i s  t e r m  i s  a l s o  s m a l l  s i n c e  K(x ,  y ,  N) 
goes  o v e r  i n t o  a 6 - f u n c t i o n .  I t  f o l l o w s  f rom t h i s  t h a t  

1 1 

lira .I [p(y)--p(x)]K(x, y, y )dy= f [p(y) - -p(x)]8(x- -y)dy  = p ( x ) - - p ( g ) ~ O .  (23) 
~ 0  6 0 

Therefore, if we take as the solution of the initial integral Eq. (21) the first term in the 
Eq. (22), we find that such a solution is practically exact for large and small values of y. 
For intermediate values of y it will have an error, small for small 0, which can be ascer- 
tained by comparison with a numerical solution. Moreover, using the description (22) for the 
initial integral Eq. (21), we can quickly obtain numerical solutions on a computer using the 
method of successive approximations. Indeed, if as the zeroth approximation we take the pro- 
posed approximate solution 

Po (x) = [1 -- 9 z (x)] -1, (24) 

1 

where z(x)= S K(x. 9, y)dy , and calculate remaining approximations by the recursion formula 
0 

1 

p .  (x) = Po (x) ~[I + 9 J' tPn-1 (Y) - -  Pn-1 (x)] K (x, y, y) dy],. (25)  
o 

it is then clear that the following approximation is proportional to p2 and not p, as in the 
direct use of this method for solving Eq. (21). We can give a physical clarification of this 
approximate solution. For small values of the rereflected flows the effective radiant fluxes 
are affected, in the main, by the radiation from the element in closest proximity. The con- 
tribution from this element is taken into account exactly while that from the other elements 
is accounted for approximately: in effect, these radiate in the direction of the element con- 
sidered only as much as the element in closest proximity; however, since the local angular 
coefficient decreases sharply, the value itself of the incident flux from this is small, and 
this justifies such an assumption. For a small degree of blackness the rereflected flows are 
large and the effective radiation at the point considered is influenced by the large region 
on the other body, so that the relative error is large in comparison with the exact solution. 

By way of example, we consider the calculation of the radiant heat transfer from a sys- 
tem of two strips [I]. As was shown in [i] for Ex = ~2 = ~ and TI = T2 = T, the thermal flow 
profiles may be calculated from the relation 

q (x) I - -  S~a (x) 
, ( 2 6 )  

r ~ 1 - -  s 

where Ba(X) is the solution of the integral Eq; (2). 
the function 

where 

As the solution of this equation we tak~ 

1 (27) Oc) = 
1 - -  (1  - -  e )  z ( x )  

1. 

y"~ ~ dy 1 [ 1 --  x 
z ( x ) =  ~ bf [ ( x _ y ) ~ + y . ] 3 / ~  --  2 V ' ( l - - x ) 2 + y  "~ 

x ] 
+ V x ~ + Y~ " 

The thermal flow profiles calculated with the aid of the relation (27) are shown in Fig. 
The approximate solution coincides with the numerical solution for all ~ for large y and 

for all y for large ~. The largest deviation is observed for E = 0.i, where it is attained 
for intermediate values of y. Thus, for u = 0.i this value is equal to 0.15; for y = 0.05 it 
is 0.5, which, according to what was said earlier, should be the case. However, the relative 
value of the error for small s is substantial, but it should be noted that the actual value 
of the thermal flow for small E is small. 
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Fig. 4. Effective degree of blackness 
of a wedge-shaped cavity (points a are 
for e = 0.i; points b are for e = 0.5; 
points c are for e = 0.9 and are the 
experimental data taken from [8]): 
curves labeled i, i = i, 2, ..., 9, 
are for g = i/10. 

The value of the total thermal flows is found from the formula 

Q 1 
= # q (x) dx. (28) 

s~T~L o 
In Table i we present the values of these flows taken from [i] and also their values calcu- 
lated from the relation (27). 

The total thermal flows are obtained in terms of quadratures; however, the integral (28) 
cannot be evaluated in closed form. The values of the flows were obtained numerically using 
Simpson's rule. As can be seen from Table i and Fig. i, the approximate solution agrees very 
satisfactorily with the numerical solution [i] and is substantially more accurate than the 
results using the "balance" method. Moreover, taking into account that as y § 0 %his solution 
tends towards the exact solution (whereas numerically this solution cannot be obtained by the 
usual method, as in [I]), we can study, fairly simply, the nature of its behavior in this case 
in the boundary zone of the two halfplanes. To this end, in the relation for z(x) we make the 
change of variables x = x/y, y = y/y and let y § 0; then 

I i z(~)  = T �9 [ ( x -  y)~-l]  ~/~ 

and the limiting thermal flow profile becomes 

q ~ )  _ 1 [ 1 - - e  [ ~ T  ~ 1 - -  

' (29) 

i ] 
2 V ~ : "  ,-4- 1 

The distribution of the thermal flows in this limiting case is shown in Fig. 3. The influence 
of the boundary effect for various c is evident from these graphs. For large values of ~ the 
radiation in the system of planes is practically closed off by 4 calibers from the edge; as 
decreases, the influence of the boundary zone becomes significantly stronger, and the radiation 
for g = 0.i is closed off by about i0 calibers. It is interesting to note that at a boundary 
point there exists a limiting value of the thermal flow below which it may not be dropped. 
From the relation (30) we have 

q(O) 1 
~ T  ~ 1 + ~ (31) 

It is evident from Fig. 1 that for small values of the parameter y the values of the 
flows at the boundary points do not appear below the limiting values in the data presented by 
the authors of [i]. This is apparently due to an error in their numerical solution. One can 
expect that if the numerical solution is carried out with greater precision the deviations 
among them will be somewhat less than in Fig. i and in Table i. 

The application of an analogous approach to the calculation of radiant heat transfer in 
the case Tx ~ Ta for other systems of bodies, as in [2, 3], as well as for the case ~ # ~a 
for problems with constant heat emission (these latter problems were solved by the author and 
also by the usual numerical method, for example, for systems of two plates) showed higher ac- 
curacy in the results obtained in comparison with numerical solutions (no more than 20% for 
the poorest of the versions considered). 
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We can also obtain a solution for a wedge-shaped cavity. The flow distribution in the 
same situation as that used in [i] was obtained in the form 

~oT ~ -~ ~ -  V (cosO--x )2~-s in~O + 1 (32)  

w h i c h  was  f o u n d  t o  a g r e e  w i t h  t h e  r e s u l t s  i n  [1 ,  7] ( i n  [7 ]  a s e a r c h  f o r  an  e x a c t  s o l u t i o n  
o n l y  a t  an  a n g u l a r  p o i n t  was  e x a m i n e d  i n  a somewhat  d i f f e r e n t  way ,  and  t h e  a g r e e m e n t  was  n a t -  
u r a l  s i n c e  t h e  s i n g u l a r i t y  o f  t h e  i n i t i a l  i n t e g r a l  e q u a t i o n  a s  x § 0 was  b y - p a s s e d ) .  The e f -  
f e c t i v e  d e g r e e  o f  b l a c k n e s s  o f  s u c h  a c a v i t y  i s :  

{ ~ [ / / ] [ "  +, " ]}} (1 - -  e) cos ~ 1 + e tg a - -  I (1 -t- g) tg -~- + e - -  1 
4 2 " ( 3 3 )  

eel f = 8 I + ] / ~  arctg 2 ]/'~- - -  arctg - -  2 g ' 8  

Figure 4 presents the results of the calculations for Ceff. 

In conclusion, it should be noted that although the singularity of the integral equations 
we have pointed out is not strictly observed for all forms of bodies, the physical basis of 
our approach is on firmer grounds, for bodies of finite dimensions, than the "balance" method 
used in [5]. In contrast to the latter, our approach has the possibility of directly obtain- 
ing analytical expressions for the distributions of thermal flows over the surface of bodies 
as a function of dimensionless variables without having to solve algebraic systems of high 
order. Also, taking into account the fact that the physical formulation itself is, generally 
speaking, approximate, one can expect that our approach will find application in engineering 
practice. 

NOTATION 

e, emissivity; o, Stefan--Boltzmann constant; T, temperature; ~, n, strip coordinates; L, 
strip width; d, distance between strips; x, y, y, dimensionless coordinates and distance; 
Eeff, effective radiant heat flux; B, dimensionless effective radiant heat flux; K, kernel of 
the integral equation; q, heat flux carried away; 0, reflection coefficient; 6, delta-function; 
Q, total heat flux; | opening angle of wedge-shaped cavity; i, number of body; Ein, incident 
radiant heat flux; Tp, equilibrium temperature; eeff, effective emissivity. 
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